On-chip optical processing
نویسندگان
چکیده
Microoptical components, such as diffractive and refractive microlenses, micromirrors, beam splitter and beam combining have recently received considerable attention in the optics R&D centers and finally in the manufacturing community. This achievement is due to MEM technology that demonstrated major improvements in overall performance/cost of optical systems while offering the possibility of relatively rapid transition to products for military, industrial and consumer markets. Because of these technology advances, an industrial infrastructure is rapidly becoming established to provide combining microoptical components and MEM-based microactuators for onchip optical processing. Optical systems that once were considered to be impractical due to the limitations of bulk optics can now easily be designed and fabricated with all required optical paths, signal conditioning, and electronic controls, integrated on a single chip. On-chip optical processing will enhance the performance of devices such as focal plane optical concentrator, smart actuators, color separation, beam shaping, FDDI switch, DMDs, and miniature optical scanners. In this paper we review advances in microoptical components developed at Rockwell Science Center. We also review the potential of on-chip optical processing and recent achievement of free-space integrated optics and microoptical bench components developed at UCLA, and digital micromirror devices (DMDs) developed at Texas Instruments.
منابع مشابه
A Review of Optical Routers in Photonic Networks-on-Chip: A Literature Survey
Due to the increasing growth of processing cores in complex computational systems, all the connection converted bottleneck for all systems. With the protection of progressing and constructing complex photonic connection on chip, optical data transmission is the best choice for replacing with electrical interconnection for the reason of gathering connection with a high bandwidth and insertion lo...
متن کاملNon-Blocking Routers Design Based on West First Routing Algorithm & MZI Switches for Photonic NoC
For the first time, the 4- and 5-port optical routers are designed by using the West First routing algorithm for use in optical network on chip. The use of the WF algorithm has made the designed routers to provide non-blocking routing in photonic network on chip. These routers not only are based on high speed Mach-Zehnder switches(Which have a higher bandwidth and more thermal tolerance than mi...
متن کاملNon-Blocking Routers Design Based on West First Routing Algorithm & MZI Switches for Photonic NoC
For the first time, the 4- and 5-port optical routers are designed by using the West First routing algorithm for use in optical network on chip. The use of the WF algorithm has made the designed routers to provide non-blocking routing in photonic network on chip. These routers not only are based on high speed Mach-Zehnder switches(Which have a higher bandwidth and more thermal tolerance than mi...
متن کاملPhotonic Information Processing on a Silicon Chip
We fabricate and demonstrate devices in silicon that leads towards the goal of implementing optical information processing on a silicon chip. To this effect, we demonstrate all-optical multi-level logic using a system of symmetric ring resonators in parallel. The device can form the basis of an on-chip optical digital to analog converter (ODAC). We also demonstrate ultra low cross talk by using...
متن کاملSilicon Nanophotonics for On-Chip High-Speed Parametric Optical Processing
Utilizing all-optical parametric processing in a silicon photonic chip, we demonstrate wavelength conversion for 10 and 40-Gb/s NRZ as well as 160-Gb/s pulsed-RZ data signals, and demonstrate eight-way wavelength multicasting at 40-Gb/s NRZ data rates. ©2009 Optical Society of America OCIS codes: (130.7405) Wavelength conversion devices; (190.4380) Nonlinear optics, four-wave mixing
متن کامل